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Abstract. *We study a frusfrated spin-glass model on recursive diamond-shaped lattices. We 
prove the existence of a mean-Keld-rype phase Umsition and analyse the high- and low- 
temperahrre regions. 

1. Introduction 

In this paper, we analyse the critical behaviour of a frustrated spin glass defined on a 
hierarchical diamond lattice. Hierarchical-type lattices have been introduced in several 
contexts (for instance, in the study of percolation, the random-field king model, random 
surfaces, random resistor networks, etc) because the renormalization transformation is exact. 
The definition of spin-glass models in such lattices provides a non-trivial framework between 
the infinite-range version of the mean-field theory and the heavily debated short-range spin 
glass in finite dimensions. The problem was investigated several years ago in [Z, 3,111 
and rigorously in [6] by means of renormalization-group techniques. In [Z, 31, chaotic 
renormalization-group trajectories were obtained for the first time and have been related to 
an intermediate-range chaotic spin-glass order. In [ll,  61, the main object of study was the 
evolution of the probability distribution of the random couplings under a change of scale. In 
particular, the existence of a non-trivial fixed point corresponding to the spin-glass transition 
has been proved. In terms of spin observables, this transition is expressed by a non- 
vanishing Edwards-Anderson parameter at low temperature. This analysis was extended 
in [17] and the existence of another fixed point corresponding to a mixed ferromagnetic 
(antiferromagnetic) spin-glass phase was proved. 

In the following, we investigate this model using a different approach which allows a 
complete characterization of the phase transition (for some other applications see [7.13-161). 
Instead of addressing the question of the evolution of the effective couplings as a function 
of the size of the lattice, we formulate the model in terms of martingales depending on the 
temperature and look at their behaviour at the thermodynamic limit. It turns out that in 
many interesting cases these martingales are not regular at the critical temperature. We can 
thus relate the phase transition to the singular behaviour of the corresponding martingale. 
This approach was developed using the thermodynamic formalism [18] in several situations 
[7,16,13,14]. One of the main advantages is that we can treat long- and short-range 
interactions. Let us also mention that a mean-field-type transition was studied in the case of 

* Work partially supported by the HCM grant CHRX-CT93-MI 11. 
t E-mail address: koukiou@u-cergy.fr 

0305470/95/102737+07S1.9.50 @ 1995 IOP Publishing Ltd 2737 



2738 F Koukiou 

a short-range spin glass on the Bethe lattice [5].  Here also, the definition on the model on 
a tree allows the study of a recursion relation. While we do not expect the short-range spin 
glass in finite dimensions to have a mean-field behaviour (a first rigorous insight is given 
in [14]), the rigorous study of mean-field models should provide some qualitative aspects 
of the phase transition. 

In section 2 we reformulate the model. In section 3 we calculate the critical temperature 
and analyse the high-temperature region. Indeed, we show the existence and the strong self- 
averaging property of the free energy and the uniqueness of the Gihbs state. An explicit 
formula for the free energy at low temperatures is given in section 4. As we shall see, the 
spin glass studied in this paper undergoes a meawfield-type phase transition (in fact, very 
similar to that of the random energy model [9]). 

2. The model 

In this section, we express the model in t e m  of a random process. Let us first recall the 
definition of a spin glass on the hierarchical diamond lattice. 

Let p be an integer > 2.  We can define, at the first step, the lattice ho by two sites 
and a bond bo. Having defined the lattice A+] at step N, we consrmct the lattice AN 
by replacing each bond by-’), i = 1, . . . , 2 p  by p sites and 2 p  bonds bj” relating each 
added site to the endpoints of the bond by-” .  Thus , th e lattice AN has ( 2 ~ ) ~  bonds bj”. 

The set of all possible 
configurations is then given by the product space XN = {-I, 1)”” equipped with the 
counting measure. For notational convenience, let us note by s and s‘ the spins associated 
with the two sites of the lattice Ao and by sy’, i = 1, . . . , Zp, j = 1,. . . , N, the spins 
associated with the sites of AN. We shall also use the symbobsb;o) to denote the product of 
the values of the spin variables at the endpoints of the bond bi . In figure 1 we present the 
first and the second step of the build-up of the diamond lattice. 

Let Jo be a Gaussian variable defined on the probability space (a, F, P) of mean zero 
and finite variance EJ: (without loss of generality we shall assume in the following that 
E J t  = 1). To each bond by’, i = 1, . . . , 2 p ,  j = 1, . . . , N, we now associate the random 
couplings JbU) having common distribution with Jo. 

To each site we associate an Isiig spin space (-1,l). 

The k i l t o n i a n  of the model in AN is given formally by 

We shall also use the abbreviation 
hA (3 ) - e-BHh(‘) n b -  

for the Boltmann factor. 
We see that the model is parametrized by p and the law of Jo. Since JO is Gaussian 

with zero mean, the only relevant parameter of its law is its variance. Notice, however, 
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that only the combination ~ J o  enters in the definition of the model; therefore. the model is 
actually characterized by p and pz, where ,6 > 0 is the inverse temperature. 

We also recall the definitions of the thermodynamic quantities to be studied in the 
following sections. The specific free energy is given by 

-MA,(B) =~IANI-' log ZA,(P) 
where ZA,(p) = z , h ~ ~ ( S b )  is the partition function. Finally, the Gibbs distribution U 
has a density with respect to the product measure ds 

Vn,.p(dS) = Z~:(B)~A, (sb) ds 
It is worth noticing that the definition of the previous quantities in terms of the bond 
configurations Ub is equivalent to the conventional definition in terms of the spin 
configurations U .  

Let Gi, (p)  be the sequence of the random variables 

If f i  is the a-field generated by the variables Jbw, we have the following: 

Proposition. 2.1. For every p >~ 0, the sequence G ' , M ( p , ~ b )  is a positive integrable 
martingale with G i o  = ~ 1 .  Moreover, G i N ( B , s b )  converges as. for N -+ 00 to the 
integrable random variable G',(p, Sb) with E G L ( p ,  Sb)  6 1. 

ProoJ For every N ,  the random variable Gi,,(p,sb) is finite, strictly positive~and 2%- 
measurable with E G i N ( @ )  = 1. Denoting by J~VW-U the variables indexed by the bonds 
of the 'surface' AN \ AN-, ,  and remarking their independence with respect to ~ N - I  we 
have that 

GiN- ,  (b, sb) .  
By the martingale convergence theorem [81 we have that almost surely limN+, Gi,, (p. Sb)  = 

0 

Returning now to our model we can easily see that the partition function ZA,(j?) can 
G',(p, Sb),  and, by Fatou's lemma, that EGL(B) 6 1. 

be expressed as 

In the following section we shall study the convergence of the martingale GA,(~) = 
ZnN(B) 
EZnN (8) ' 

3. High-temperature behaviour 

In this section, we start by giving a condition for the uniform integrability of the martingale 
GA,(B). 

Theorem3.1. For 0 < ,9 -= 
G,(B) as N + CO. 

the sequence CA,@) converges in L' to the l i t  
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ProoJ From proposition 2.1 we have that the limit of the martingale satisfies EG,(p)  < 1. 
We need only to prove that if 0 < p < e, EG&) > 0 or  equivalently that 
EGZ*(p) # 0. Let us remark that one can express the martingale GA,,(~) using the 
following functional relation: 

where the variables G!i_, ( p )  have the same distribution as G A ~ - ~ @ ) .  Using this expression 

0 one can check that if @ < Z L ,  then EGZ2(p)  > 0 and the result follows. e =  
The previous theorem implies the following: 

~~ 

Corollnry 3.2. If 0 < p < E, -8- we have for every N 

GA,W = E(Gw(B)IFNN). 
ProoJ The assertion follows from the L’ continuity of the conditional expectations: 

E(GA,(B)IFN) + E(G,(B)IFN) as L + W .  

But E(G,,(p)IF”) = G A , , ( ~ )  for L > N and the corollary follows. 0 

Defrniiion 3.3. The critical temperature pc of the model is defined as pc = e. 
As a consequence of the theorem 3.1 we have the following: 

Theorem 3.4. For p < pc the lim,~,,(2p)-~logG~,Gg) exists almost surely and in the 
mean it is equal to zero. 

Proox The almost sure existence of the positive limit G,@) guarantees the almost sure 
existence of the log G&). Moreover, lim~,,(2p)-~ log GA, (~ )  = 0. For the second 
assertion of the theorem, it suffices to check, using Jensen’s inequality, that 

0 --CO < ElogGm(,6) < ElogGn,(p) G O .  

The derivation of the free energy is now given by 

Theorem 3.5. For 0 < p < pC, the limit 

exists almost surely. Moreover, -pfm(p) = f + log2. 

The previous result formulates the existence and the self-averaging property of the 
free energy. This property is expressed here in the strongest form. It is indeed 
an easy matter to check that the theorem guarantees the coincidence of the annealed 
limN+m(2p)-N log EZA,(@) and quenched IimN,, N-’E log ZA, Gg) fkee energies. The 
strong self-averaging property under this form arises in the high-temperature phase of many 
mean-field models [I] but its general formulation is given by [19] 

E(fA,(b) - EfA,(p))’ O(l&Vl-’), 

Let us also note that we can obtain various boundary conditions by fixing the two 
extreme spins s and s’ of the lattice. We have: 
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Theorem 3.6. For every temperature B the free energy is independent of the boundary 
conditions. 

We now can investigate the Gibbs distributions defined in section 2. 
Theorem 3.7. For 0 < B < BC, the sequence of random probability measures uAN,p(.) 
converges almost surely as N + CO, to a unique limit w p ( . )  on the Borel field of [O, 11. 
Proof: The assertion follows using theorem 3.1 and the Kolmogorov’s extension theorem. 0 

One might ask if the previously defined random state has a Gibbsian description in the 
sense of the Dobrushin, Lanford and Ruelle (DLR) formalism, prescribing the finite-volume 
conditional distributions. As in the case of multiplicative chaos [7], it is not obvious how 
to cany out a version of the DLR program. It should be remarked that here we have defined 
and studied laws on finite partitions whose the precise relation with prescribed probability 
kernels is not clear. 

We can, however, complete the study of the state wp( . )  by remarking that it is supported 
by the whole interval [0, 11 showing that there exists almost surely a Borel set of Haussdorff 
dimension 1 - & supporting the limit &(.) [12]. 
Theorem 3.8. For 0 e ,5 < pc, the Hausdorff dimension D ~ ( u p )  of the support of the 
measure up(. )  equals 1 - A z,og2. 

4. Low-temperature behaviour 

In this section, we shall estimate the macroscopic free energy in the low-temperature 
(B > Pc) region. 

As a consequence of the theorem 3.1 we have the following: 

As we shall see, 
Corollary 4.1. For p 2 Bc, the martingale Ghn(B) converges to zero as N + ca. 

@) is tending to zero exponentially fast and the free energy will be 
given by the exponential rate. The main object of the study will be the following sequence 
of finite volume quenched pressures: 

PAN @) = log ZAM(B) 
The definition of the partition function in section 2 implies that the above quantities are 
Lipschitz and convex functions of p. These properties characterize also any accumulation 
point of the sequence PA,(B).  We shall now formulate an upper and a lower bound for the 
accumulation points. 

Proposition. 4.2. Let p > @’ z 0. For every quenched accumulation point P(B)  of  PA,(^) 
we have almost surely 

Proof: Let EN be the set defined by 

1. EN = ( ZAN (B)  < efiPFtfi+l/s”) 

One can easily check using Chebyshev’s inequality that ProbEN > 1 - e-N. On the other 
hand, by the Borel-Cantelli lemma we have that Prob(1iminfEN) = 1. We shall assume 
that the set liminf EN is the quenched randomness set. Observing now that on EN 
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the result follows. 

The lower bound is given by 

Proposition. 4.3. Let f i  > fiC We have almost surely that 

p (j?) 2 B A  - ;j?: . 

U 

Proof: Assume that for j? < &, P(j?) = $ -t 1og2. From the convexity of the function 
P(j?)  we have that its graph must not be less than the tangent to $ at the critical value 
p = 8. Hence, 

0 P ( B )  2 48: +log2+ (B  - j?c)Bc = B B C  - ij?; +log2. 

We can now state the main result of this section. 

Theorem 4.4. For j? =- the limit 

N-tm 
-Pfm(j?) rim ( z p ) - N 1 o g Z A , ( B )  

exists almost surely and equals pj?= - ,@/2 + log 2. 

Proof: The assertion follows from the previous results. Namely, by applying proposition 4.2 
0 for ,3’ = flC and remarking that all accumulation points are equal. 

For the ground-state energy €0. we obtain, letting j? + 00, the following value: 

21og2 
eo = pc = Jp 

One can easily see that the low-temperature thermodynamic quantities (ground-state 
energy, entropy, etc) we obtain are very similar to al l  the mean-field models (REM, GEM, 
polymers on disordered trees,. . . [9,10,4]). 

One can define the low-temperature random states by the limits on the subsequences 
of LJA~.,~(.) for j? > pC. The study of their structure will be studied elsewhere. From the 
previous results we can, however, conclude that these limits are supported by many points 
of the unit interval. 
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